## Captain Webb Primary School Calculation Policy



This policy ensures that the teaching of calculation is consistent throughout the school.

The models and images outlined are progressive so that children can build on their prior knowledge.
This will ensure that children will acquire effective written and mental methods to allow them to access the wider maths curriculum.

## Calculation Policy

This policy provides an overview of the strategies used in our school to teach Mathematics, specifically the four operations, as defined within the National Curriculum in England: Mathematics Programme of Study.

The progression of the four operations (,,$+- x$ and $\div$ ) are shown across each of the primary year groups $1-6$. This is a guide since children progress at different rates. Teachers should model strategies appropriate to the ability of the children they teach, regardless of their year group, whilst striving to achieve age related expectations at the end of the academic year.

At Captain Webb Primary School, we believe that children should be introduced to the processes of calculation through the concrete, pictorial and abstract approach. Our children are introduced to calculation through practical activities, using concrete resources. As children develop their understanding of key concepts and mathematical models, they develop ways of recording to support their thinking. In the first instance, this recording takes the form of pictorial representations. Over time, children learn how to use models and images to support their mental and informal written methods of calculation.

As children become more proficient in their use of mental methods, their informal written methods also become more efficient. Some recording takes the form of jottings, which are used to support children's thinking. More abstract, formal written methods are taught only when the child is able to use a wide range of mental calculation strategies and these are always underpinned by concrete and pictorial experiences.

Our ultimate aim is for children to be able to select an efficient method to solve problems. Therefore, children will be encouraged to look at a calculation or problem and to determine the most appropriate method to choose - pictures, mental calculation with or without jottings or a formal, written method.

The end of year expectations in the National Curriculum shows the progression in children's use of calculation within the following strands 'Addition and Subtraction' and 'Multiplication and Division'. These end of year expectations will be achieved through the use of the following written methods of calculation.

| Year | Addition + | Subtraction - | Multiplication x | Division - |
| :---: | :---: | :---: | :---: | :---: |
| 1 | - Knows how to add and subtract one and two digit numbers to 20 including0. - Knows how to read, write and interpret mathematical statements including the addition ( + ) and equal to ( $=$ ) sign. | - Knows how to subtract one-digit and twodigit numbers to 20 including zero. <br> - Knows how to read, write and interpret mathematical statements involving subtraction (-) and equal (=) signs. | - Knows that doubles are two groups of the same number and begin to multiplication. <br> - Knows that equal groups can be represented in arrays (Begin to look at other multiples, e.g. x 5). | - Begin to understand division through grouping and sharing small quantities. |
|  | Addition of single digits: $5+3=8$ <br> ... using concrete equipment: <br> (Numicon) <br> Addition of two digit numbers to 20 and a one digit number: $12+5=17$ <br> ... using concrete equipment: <br> (Numicon) <br> (Dienes) <br> (Dienes and ten frames) <br> (Bead string) | Subtraction of single digits $7-4=3$ <br> ... using concrete equipment: <br> Subtraction of a one-digit number from a two-digit number to 20. $13-4=9$ <br> ... using concrete equipment: (Numicon) <br> (Dienes) <br> (Dienes and ten frames) <br> $\square$ $\square$ $\square$ $\square$ <br> $\square$ $\square$ $\square$  <br> $\square$ $\square$   <br> $\square$ $\square$   <br> $\square$ $\square$   <br> $\square$ $\square$ <br> $\square$ $\square$ <br>  | Doubling - linking to $\times 2$ <br> Double 4 is $8,4+4=8$ or $4 \times 2=8$ <br> ... using concrete equipment: <br> numion) 10101 <br> ... using pictorial representations: <br> Use an array or equal groups to solve multiplication problems for multiples other than 2 $5,3 \text { times or } 5 \times 3=15$ <br> ... using concrete equipment (Numicon) <br> I then use my 10s checker | Sharing equally <br> Share 10 into 2 equal groups <br> Count how many are in each set $=5$ <br> ... using pictorial representations: <br> ... using abstract number sentences: $10 \div 2=5$ <br> Grouping <br> How many $2 s$ are in 10 ? What is 10 grouped into twos? <br> ... using concrete equipment: <br> Count how many groups $=5$ <br> (Numicon) <br> Model putting the 2 s on top of the ten Numicon tile. How many 2 s have I used? 5 |


|  |  | ... using pictorial representations: <br> (Number line) <br> ... using abstract mental strategies: <br> (Counting back) <br> "put 13 in your head and count back 4" <br> 诸 $12,11,10,9$ | (Arrays, ten frames and counters) <br> ... using pictorial representations: (Arrays) <br> ... using abstract mental strategies: (Counting in multiples) <br> 51015 or $2,4,6$ | ... using pictorial representations: <br> $\bigcirc \bigcirc \bigcirc \bigcirc$ <br> $\bigcirc \bigcirc \bigcirc \bigcirc$ <br> ... using abstract number sentences: $10 \div 2=5$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | Knows efficient strategies for adding for up to two 2-digit numbers. <br> - a two-digit number and 1 s <br> - a two-digit number and 10 s <br> - - 2 two-digit numbers <br> Knows that addition is commutative. | *nows efficient strategies to subtract numbers, including: <br> - a two-digit number and ones <br> - a two-digit number and tens <br> - two two-digit numbers <br> Knows that subtraction of two numbers cannot be done in any order. | * Knows the 2,5 and 10 times table and knows related facts. <br> Knows how to write mathematical statements using the multiplication ( $\times$ ), division $(\div$ ) and equals (=) signs. <br> Knows that multiplication of two numbers can be done in any order (commutative). | * Knows division statements within the 2,5 and 10 multiplication tables <br> Knows how to write mathematical statements using the division ( $\div$ ) and equals ( $=$ ) signs. <br> - Knows that division of numbers cannot be done in any order. |
|  | Addition of a two-digit number and ones: $52+5=57$ <br> ... using concrete equipment: <br> (Dienes) | Subtraction of a two $=$ digit number and ones $45-4=41$ <br> ... using concrete equipment: | Multiplication of two numbers within the 2, 3, 5, 10 multiplication tables. <br> Introduce $x$ sign to mean 'how many times' and model recording calculations $5 \times 3=15 \text { or } 5,3 \text { times }=15$ <br> ... using concrete equipment: <br> (Numicon) | Division of numbers within known multiplication tables <br> Consolidate understanding of 'sharing' and 'grouping' as outlined within Year 1. <br> Grouping <br> How many 2 s are in 10 ? What is 10 grouped into twos? <br> ... using concrete equipment: |


using pictorial representations:
(10) (10) 1000

$$
0 \bigcirc \bigcirc \bigcirc 0
$$

Addition of a two-digit number and tens

$$
34+20=54
$$

... using concrete equipment:
(Numicon)
(Dienes)


P80908080
0.0 .40 .1 bedededed
(Place value counters)

using pictorial representations:
(10) (10) 0000
(10) 10

Addition of two two-digit numbers (no exchange):
$34+23=57$

using pictorial representations:
(10) (10) (10) $\varnothing \varnothing \varnothing \varnothing$

Subtraction of a two-digit number and tens $47-20=27$
.. using concrete equipment:
(Numicon)
(Dienes)

.. using pictorial representations:
(1) 810


## Subtraction two two-digit numbers (no

## exchange

$$
47-23=24
$$

.. using concrete equipment:

then use my 10s checker

(Arrays, ten frames and counters)

... using pictorial representations:
(Arrays)

$$
\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
$$

(Counters - one to many correspondence)

1) I need to write 5 out three times and count '1,

2, $3^{\prime}$ as I do this.

## $5 \quad 5 \quad 5$

2) Now, I need to draw circles around my numbers as I count in multiple of 5. E.g. '5, 10, $15^{\prime}$

... using abstract mental strategies:
(Counting in multiples)
51015 or $2,4,6$ or $10,20,30$
(1) N ${ }^{M}$

Count how many
groups $=5$
using pictorial representations:


(Counters - one to many correspondence)

1) I need to write 2 as many times as it takes me to count in multiples of 2 to get to 10 e.g. 2, 4, 6, 8, 10.

$$
\begin{array}{lllll}
2 & 2 & 2 & 2
\end{array}
$$

2) Now, I need to draw circles around my numbers to count how many groups I have e.g. 1, 2, 3, 4, 5.

... using abstract number sentences:
$10 \div 2=5$
$12 \div 3=4$

Pupils write number sentences to represent their workings out using the division $(\div)$ and equals (=) signs.


## (Place value counters)



Because I have more than 9 ones, I need to exchange 10 ones for 1 ten.

... using pictorial representations:
(10) (10) (10) 0000000
(10)
$\bigcirc \bigcirc 00$

Because I have more than 9 ones, I need to exchange 10 ones for 1 ten.
(10) (10)
(10)
$\varnothing \varnothing \varnothing \varnothing$
(10)

.. using pictorial representations:

$$
\text { (10) } 10 \text { (10) } 100
$$

7 ones cannot be subtracted from 2 ones so exchange 1 ten with 10 ones.


```
0000000000
```

Now, subtract 7 ones.

$$
\otimes(10)(10)
$$

$\bigcirc 00 \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$
Now, subtract 2 tens.

$\bigcirc \bigcirc \bigcirc \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$
Following the concrete equipment and pictorial representations, children will use abstract, mental strategies:
$45-4=41$
$47-20=27$
$47-23=24$
$52-27=25$

|  | Following the concrete equipment and pictorial representations, children will use abstract mental strategies: $\begin{aligned} & 52+5=57 \\ & 34+20=54 \\ & 34+23=57 \\ & 47+24=71 \end{aligned}$ <br> Addition of three single digit numbers: $4+7+6=17$ <br> ... using concrete equipment: <br> Identify number bonds if possible, e.g. 4 and 6 make 10/4+6=10. Then, add on 7 (Numicon) <br> ... using abstract, mental strategies: <br> (4) $+7+6=17$ <br> Identify the two numbers that make ten and then add on the remaining number mentally. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Knows efficient mental strategies including patrititioning and adjusting to add numbers mentally, including: <br> - a three-digit number and ones <br> - a three-digit number and tens <br> - a three-digit number and hundreds <br> Knows how to add numbers with up to three digits, using formal written methods of columnar addition | Knows efficient mental strategies including partitioning and adjusting to add numbers mentally, including: <br> . a three-digit number and ones <br> - a three-digit number and tens <br> - a three-digit number and hundreds <br> Knows how to subtract a two-digit or 3digit number from a two-digit or 3 digit number using a formal written method | Knows the multiplication facts for the 2, <br> - 3, 4 and 8 multiplication tables. <br> Knows how to multiply two-digit <br> * numbers times one-digit numbers, using multoiplication facts they know, using efficient written methods'partitioning method' | - Knows how to derive corresponding divisions for the 2,3,4,5,8,10 times table <br> - Knows how to divide using known multiplication tables, including for two-digit numbers divided by onedigit numbers, using mental methods, progressing to efficient written methods |
|  | Addition of a three-digit number and ones: $176+3=179$ | Subtraction of a three-digit number and ones: $136-4=132$ | Recall and use multiplication facts for the 3, 4 and 8 multiplication tables. $8 \times 4=32$ | Recall and use division facts for the 3,4 and 8 multiplication tables. $56 \div 8=7$ |


(Place value counters)


Addition of a three-digit number and hundreds:
$306+300=606$
... using concrete equipment:
(Dienes)

(Place value counters)


Addition of numbers with up to three digits $263+129=392$
... using concrete equipment:
(Dienes)

... using concrete equipment:

## (Dienes)


(Place value counters)


Subtraction of numbers with up to three digits
$263-129=134$
... using concrete equipment:
(Dienes)


9 ones cannot be subtracted from 3 ones so exchange 1 ten for 10 ones.

(Place value counters) First calculation


Count the number of ones, and then count the number of tens.


## Second calculation



Count the number of ones, and then count the number of tens.

... using pictorial representations:

## First calculation

Count the ones first, then the tens and add the numbers together.
$54 \div 3=18$.
... using concrete equipment:
(Numicon)
880808080
000600060
040808060
Share the tens equally into 3 groups.


I have 24 left over. Now I need to divide 24 by 3.

(Numicon)


68

How many 3s goes into 5?
I


0

(Place value counters)


## Exchange 10 ones for 1 ten




Now, subtract 2 tens.


Now, subtract 1 hundred.

(Place value counters)


9 ones cannot be subtracted from 3 ones so exchange 1 ten for 10 ones.

(10) $0 \bigcirc \bigcirc$
(10) $\bigcirc \bigcirc \bigcirc$
(10) $0 \bigcirc 0$
(10) $\bigcirc \bigcirc$
$40+12=52$

## Second calculation

(10) $10 \bigcirc \bigcirc \bigcirc$
(10) 10
10 (10)
$60+$
12
$=72$
... using abstract methods:
Use of partitioning method, independent of equipment and diagrams.

$$
\begin{aligned}
13 \times 4 & =(10 \times 4)+(3 \times 4) \\
& =40+12 \\
& =52
\end{aligned}
$$

$24 \times 3=(20 \times 3)+(4 \times 3)$
$=60+12$
= 72

$3 \quad 5 \quad 24$

... using abstract methods: Completion of number sentences.
$60 \div 3=20$

Progression in the formal written method for division:

## Step 1

Two-digit number divided by a one-digit number - no exchanging across place value columns e.g. $84 \div 4=21$

... using pictorial representations:(10) (10)(10)(10)(10)(10)(10)000
( $\times$ )
(10)(1)

Exchange ten ones for 1 ten.(10)(10)(10)(10)(10)(10) $00 \varnothing$
( $\infty$ (D) (10) (10)
$\varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$
... using abstract mental strategies:
(Column method)
263
$+129$
3 92

## Progression in columnar addition:

Step 1 (to introduce)
2 digits - no exchanging e.g. $45+32$
Step 2
2 digits - exchanging to the tens e.g. $43+18$

## Step 3

3 digits - exchanging to the tens e.g. $263+$ 119

... using pictorial representations:
(100)(100)(10)(10)(10) 1000

9 ones cannot be subtracted from 3 ones so exchange 1 ten for 10 ones and subtract 9 ones.
( 0 ( $\times$ (10)(10)(10)(10) (10) 000
Now, subtract 2 tens.
(10) (0) (10)(10) DD

Now, subtract 1 hundred.

$\varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$


## Step 2

Two-digit number divided by a one-digit number - involving exchanging across place value columns without remainders e.g.

|  | 1 | 8 |
| :---: | :---: | :---: |
| 3 | 5 | ${ }^{2} 4$ |


|  | Step 4 <br> 3 digits - exchanging to the hundreds e.g. $357+261$ <br> Step 5 <br> 3 digits - exchanging to the thousands e.g. $847+931$ <br> Step 6 <br> 2 and 3 digit numbers - understand place value including the place value of columns. | ... using abstract mental strategies: <br> (Column method) <br> Progression in columnar subtraction: <br> Step 1 (to introduce) <br> 2 digits - no exchanging e.g. 58-27 <br> Step 2 <br> 2 digits - exchanging from tens e.g. 42-18 <br> Step 3 <br> 3 digits - exchanging from tens e.g. 263 119 <br> Step 4 <br> 3 digits - exchanging from hundreds e.g. <br> 347-261 <br> Step 5 <br> 2 from 3 digit numbers - understand place value including the place value of columns. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | * Knows efficient methods for addition and subtraction up to and including four-digit numbers. (columnar addition) <br> * Knows how to add numbers with 2 decimal places, using formal written methods (columnar addition) | * Knows efficient methods for addition and subtraction up to and including four-digit numbers. (columnar addition) <br> * Knows how to subtract numbers with 2 decimal places, using formal written methods (columnar subtraction) | * Knows and applies table facts for recall of multiplication and division facts for multiplication tables up to $12 \times 12$.. <br> Knows how to multiply two-digit and threedigit numbers by a one-digit number using formal written layout e.g. $84 \times 6,216 \times 4$ Knows how to multiply three-digit numbers with 1 decimal place by a one-digit number using formal written layout e.g. $134.5 \times 7$ | * Knows division facts for multiplication tables up to $12 \times 12$. <br> * Knows how to divide numbers up to 3 digits by a 1 digit number using the formal written method (no remainders) |
|  | Addition of numbers with up to four digits: | Subtraction of numbers with up to four digits | Recall and use multiplication facts for the multiplication tables up to $12 \times 12$. | Recall and use division facts for the multiplication tables up to $12 \times 12$. |

## ... using concrete equipment:

Use of place value chart and dienes (as used in Year 3).

| Thousands | Hundreds | Tens | Ones |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Use of place value chart and place value counters (as used in Year 3).

... using pictorial representations:
Use of place value counters to support understanding (as used in Year 3).
... using abstract strategies:
(Column method)
four digit + four digit
$\begin{array}{llll}4 & 4 & 7 & 8\end{array}$
$+3762$

| 8 | 2 | 4 | 0 |
| :--- | :--- | :--- | :--- |

... using concrete equipment:
Use of place value chart and dienes (as used in Year 3).


Use of place value chart and place value counters (as used in Year 3).

... using pictorial representations:
Use of place value counters to support
understanding (as used in Year 3).
... using abstract strategies:
four digit - four digit

$$
\begin{array}{cccc}
5 & 13 & 1 & \\
6 & 4 & 6 & 7 \\
2 & 6 & 8 & 4 \\
\hline 3 & 7 & 8 & 3
\end{array}
$$

four digit - three digit
Understanding place value and the place value of columns

$$
\begin{array}{cccc}
1 & { }^{1} 4 & 3 & 1 \\
2 & 5 & 4 & 3 \\
- & & 8 & 7 \\
\hline
\end{array}
$$

... using concrete equipment:
Use of counters - one to many correspondence (as used in Year 3).
... using pictorial representations:
Use of counters - one to many correspondence (as used in Year 3).
... using abstract mental strategies: Counting in multiples (the same as year 3 but involving all multiplication facts up to $12 \times 12$ )

Multiplication of two and three digit numbers by a one-digit number
$216 \times 4=864$
... using concrete equipment:
(Place value counters)

| Thousands | Hundreds | Tens | Ones |
| :--- | :--- | :--- | :--- | :--- |
|  | $\odot$ | $\odot$ | 000000 |
|  | - | $\odot$ | 000000 |
|  | 0 | $\odot$ | 000000 |
|  | 0 | $\odot$ | 000000 |
|  |  |  |  |

First, count how many ones there are. Pupils to count in multiples e.g. 6, 12, 18, 24. Because I have ' 24 ' ones in one place value column, I know I need to exchange 20 ones for 2 tens and count how many ones are left.


Now, count how many tens there are.

... using concrete equipment:
Use of counters - one to many correspondence (as used in Year 3).

## ... using pictorial representations:

Use of counters - one to many correspondence (as used in Year 3).
... using abstract mental strategies: Counting in multiples (the same as year 3 but involving all division facts up to $12 \times 12$ )

Divide numbers with up to three-digit by a one-digit number
$976 \div 8=122$
... using concrete equipment:
(Numicon)


How many 8s go into 9?
8


Now, make 17 and check how many 8s go into 17.

four digit + three digit
Understanding place value and the place value of columns
$\begin{array}{llll}1 & 4 & 5\end{array}$
$+765$
2221
111

Using 0 as a place holder
$2 \quad 6 \quad 0 \quad 5$
$+\quad 809$
$\begin{array}{llll} & 3 & 4 & 4\end{array}$

Numbers with 1 decimal place

$$
\begin{array}{lllll}
3 & 7 & 9 & . & 3
\end{array}
$$

$+203.5$

$$
\begin{array}{lllll}
\hline 5 & 8 & 2 & . & 8
\end{array}
$$

Numbers with 2 decimal places

$$
\begin{aligned}
& \begin{array}{llll}
3 & 7 & 9 & 3
\end{array} \\
& +203.52 \\
& \begin{array}{llllll}
5 & 8 & 2 & . & 8 & 6
\end{array}
\end{aligned}
$$

*Use partitioning methods to support understanding of columnar addition where appropriate.

$$
\begin{aligned}
& \text { Using } 0 \text { as a place holder } \\
& \begin{array}{lll}
5 & 9 & 1
\end{array} \\
& 2 \quad \text { Q } 5 \\
& \begin{array}{llll} 
& & 8 & 9 \\
\hline 2 & 5 & 1 & 6
\end{array}
\end{aligned}
$$

Method 1

$$
\left.\begin{array}{cccc}
1 & 9 & 9 & \\
\sim & Q & Q & { }^{1} 0 \\
- & & 4 & 7
\end{array}\right)
$$

Method 2
More efficient - Subtract 1 from both numbers in the calculation. 1999-474
$\begin{array}{llll}1 & 9 & 9 & 9\end{array}$
$+\quad 474$
1525

Numbers with 1 decimal place

$$
\begin{array}{rcccc} 
& 3 & 1 & & \\
7 & 4 & 3 & . & 7 \\
-\quad 2 & 1 & 6 & . & 2 \\
\hline 5 & 2 & 7 & . & 5 \\
\hline
\end{array}
$$

Numbers with 2 decimal places

$$
\begin{array}{ll}
3 & 1
\end{array}
$$

$743 \quad 7 \quad 2$

$-$| 2 | 1 | 6 | . | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 2 | 7 | . | 5 | 1 |

Now, count how many hundreds there are. Pupils to count in multiples. E.g. '2, 4, 6, 8'


## ... using pictorial representations:



First, count how many ones there are. Pupils to count in multiples e.g. 6, 12, 18, 24. Because I know I cannot have ' 24 ' ones in one place value column, I know I need to exchange 20 ones for 2 tens and count how many ones are left.


Now, count how many tens there are and how many hundreds there are. Pupils to count in multiples e.g. 2, 4, 6, 8 .

Now, make 16 and check how many 8s go into 16 .

... using abstract methods:
Progression in the formal written method for division:

Step 1
Two and three-digit numbers divided by a one-digit number - no exchanging across place value columns e.g. $84 \div 4=21,396 \div 3=$ 132


## Step 2

Two and three-digit numbers divided by a one-digit number - involving exchanging across place value columns without remainders e.g. $138 \div 6=23,976 \div 8=122$


* Introduce the concept of a remainder.


|  |  |  | Step 4 <br> three digits x one digit - exchange to tens e.g. $219 \times 4$ <br> Step 5 <br> three digits $x$ one digit - exchange to tens, hundreds and thousands e.g. $425 \times 4$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 5 | - Knows how to add whole numbers with more than 4 digits (and with up to 3 decimal places), including using formal written methods (columnar addition) | - Knows how to subtract whole numbers with more than 4 digits (and with up to 3 decimal places), including using formal written methods (columnar addition) | - Knows how to multiply numbers up to 4 digits by a 1 digit number using a formal written method e.g. $3721 \times 7$ <br> - Knows how to multiply one-digit numbers with up to three decimal places by whole numbers <br> - Knows how to multiply numbers up to 4 digits by 2 -digit number using a formal written method e.g. $3721 \times 37$ | - Knows how to divide numbers up to 4 digits by a one-digit number using the formal written method and interpret remainders <br> - Knows how to divide numbers up to 4 digits with up to 3 decimal places by a one-digit number using the formal short written method |
|  | The same as Year 4 but with larger numbers and with a greater number of decimals places - | The same as Year 4 but with larger numbers and with a greater number of decimals places - | Multiplication of a four-digit numbers by a one-digit numbers. | Division of numbers with up to four digits by a one-digit number. |

## up to 3 decimal places.

Continue to ensure that the use of ' 0 ' as a placeholder is used to ensure pupils are confident with the exchanging and adding on process.

## up to 3 decimal places.

Continue to ensure that the use of ' 0 ' as a placeholder is used to ensure pupils are confident with the exchanging process.

## .. using concrete equipment:

Use of place value counters (as used in Year 4).
... using pictorial representations:
Use of place value counters (as used in Year 4).
... using abstract methods:
3721
4725

| x |  |  |  | 7 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 6 | 0 | 4 | 7 |


|  |  |  |  | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 2 | 5 | 2 | 5 |
| 4 | 6 | 2 | 4 |  |

Consolidate understanding of using the formal written method without remainders as outlined within Year 4.
... using concrete equipment:
Use of Numicon (as used in Year 4)




